Whole-body positron emission tomography-computed tomography (PET-CT) imaging in oncology provides comprehensive information of each patient's disease status. However, image interpretation of volumetric data is a complex and time-consuming task. In this work, an image registration method targeted towards computer-aided voxel-wise analysis of whole-body PET-CT data was developed. The method used both CT images and tissue segmentation masks in parallel to spatially align images step-by-step. To evaluate its performance, a set of baseline PET-CT images of 131 classical Hodgkin lymphoma (cHL) patients and longitudinal image series of 135 head and neck cancer (HNC) patients were registered between and within subjects according to the proposed method. Results showed that major organs and anatomical structures generally were registered correctly. Whole-body inverse consistency vector and intensity magnitude errors were on average less than 5 mm and 45 Hounsfield units respectively in both registration tasks. Image registration was feasible in time and the nearly automatic pipeline enabled efficient image processing. Metabolic tumor volumes of the cHL patients and registration-derived therapy-related tissue volume change of the HNC patients mapped to template spaces confirmed proof-of-concept. In conclusion, the method established a robust point-correspondence and enabled quantitative visualization of group-wise image features on voxel level.
© 2022. The Author(s).