Development of AB3-Type Novel Phthalocyanine and Porphyrin Photosensitizers Conjugated with Triphenylphosphonium for Higher Photodynamic Efficacy

ACS Omega. 2022 Oct 19;7(43):39404-39416. doi: 10.1021/acsomega.2c05814. eCollection 2022 Nov 1.

Abstract

There are a number of lipophilic cations that can be chosen; the triphenylphosphonium (TPP) ion is particularly unique for mitochondrion targeting, mainly due to its simplicity in structure and ease to be linked to the target molecules. In this work, mitochondrion-targeted AB3-type novel phthalocyanine and porphyrin photosensitizers (PSs) were synthesized and their photophysical photochemical properties were defined. Fluorescence quantum yields (ΦF) are 0.009, 0.14, 0.13, and 0.13, and the singlet-oxygen quantum yields (ΦΔ) are 0.27, 0.75, 0.57, and 0.58 for LuPcPox(OAc), AB 3 TPP-Pc, AB 3 TPP-Por-C4, and AB 3 TPP-Por-C6, respectively. To evaluate the photodynamic efficacy of the TPP-conjugated PS cell viabilities of A549 and BEAS-2B lung cells were comparatively measured and IC-50 values were determined. AB 3 TPP-Por-C4, AB 3 TPP-Por-C6, and AB 3 TPP-Pc compounds compared to the reference molecules ZnPc and H 2 TPP were found to be highly cytotoxic (sub-micromolar concentration) under the light. LuPcPox(OAc) is the most effective molecule regarding cell killing (the activity). The cell killing of the TPP-conjugated porphyrin derivatives exhibits a similar response compared to LuPcPox(OAc) when the light absorbing factor of the PS is normalized at 660 nm: TPP-conjugated porphyrins absorb less light (lower extinction coefficient) but produce more radical species (higher singlet-oxygen quantum yield) and therefore effectively kill the cells. The singlet oxygen-producing capacity of AB 3 TPP-Pc is almost 3 times higher compared to LuPcPox(OAc) and 50% more efficient with respect to ZnPc, suggesting that TPP-conjugated phthalocyanine may serve as a good photosensitizer for photodynamic therapy (PDT). The high singlet oxygen generation capacity of these novel TPP-conjugated porphyrin and phthalocyanine PS suggests that they might be useful for PDT requiring lower photosensitizer concentration and reduced energy deposited through less light exposure.