Purpose: Outcome prediction of large vessel occlusion of the anterior circulation in patients with wake-up stroke is important to identify patients that will benefit from thrombectomy. Currently, mismatch concepts that require MRI or CT-Perfusion (CTP) are recommended to identify these patients. We evaluated machine learning algorithms in their ability to discriminate between patients with favorable (defined as a modified Rankin Scale (mRS) score of 0-2) and unfavorable (mRS 3-6) outcome and between patients with poor (mRS5-6) and non-poor (mRS 0-4) outcome.
Methods: Data of 8395 patients that were treated between 2018 and 2020 from the nationwide registry of the German Society for Neuroradiology was retrospectively analyzed. Five models were trained with clinical variables and Alberta Stroke Program Early CT Score (ASPECTS). The model with the highest accuracy was validated with a test dataset with known stroke onset and with a test dataset that consisted only of wake-up strokes.
Results: 2419 patients showed poor and 3310 patients showed favorable outcome. The best performing Random Forest model achieved a sensitivity of 0.65, a specificity of 0.81 and an AUC of 0.79 on the test dataset of patients with wake-up stroke in the classification analysis between favorable and unfavorable outcome and a sensitivity of 0.42, a specificity of 0.83 and an AUC of 0.72 in the classification analysis between poor and non-poor outcome.
Conclusion: Machine learning algorithms have the potential to aid in the decision making for thrombectomy in patients with wake-up stroke especially in hospitals, where emergency CTP or MRI imaging is not available.
Keywords: Machine learning; ischemic stroke; large vessel occlusion; thrombectomy; wake-up stroke.