Environmental stress triggered by climate change can alter the plant’s metabolite profile, which affects its physiology and performance. This is particularly important in medicinal species because their economic value depends on the richness of their phytocompounds. We aimed to characterize how water deficit modulated the medicinal species Melia azedarach’s lipophilic profile and antioxidant status. Young plants were exposed to water deficit for 20 days, and lipophilic metabolite profile and the antioxidant capacity were evaluated. Leaves of M. azedarach are rich in important fatty acids and oleamide. Water deficit increased the radical scavenging capacity, total phenol, flavonoids, and catechol pools, and the accumulation of β-sitosterol, myo-inositol, succinic acid, sucrose, d-glucose and derivatives, d-psicofuranose, d-(+)-fructofuranose, and the fatty acids stearic, α-linolenic, linoleic and palmitic acids. These responses are relevant to protecting the plant against climate change-related stress and also increase the nutritional and antioxidant quality of M. azedarach leaves.
Keywords: Melia azedarach; catechols; drought; flavonoids; oleamide; water deficit.