Cancer-Associated Fibroblasts in Cholangiocarcinoma: Current Knowledge and Possible Implications for Therapy

J Clin Med. 2022 Nov 2;11(21):6498. doi: 10.3390/jcm11216498.

Abstract

Cholangiocarcinoma (CCA) is an aggressive neoplasia with an increasing incidence and mortality. It is characterized by a strong desmoplastic stroma surrounding cancer cells. Cancer-associated fibroblasts (CAFs) are the main cell type of CCA stroma and they have an important role in modulating cancer microenvironments. CAFs originate from multiple lines of cells and mainly consist of fibroblasts and alpha-smooth muscle actin (α-SMA) positive myofibroblast-like cells. The continuous cross-talking between CCA cells and desmoplastic stroma is permitted by CAF biochemical signals, which modulate a number of pathways. Stromal cell-derived factor-1 expression increases CAF recruitment to the tumor reactive stroma and influences apoptotic pathways. The Bcl-2 family protein enhances susceptibility to CAF apoptosis and PDGFRβ induces fibroblast migration and stimulates tumor lymphangiogenesis. Many factors related to CAFs may influence CCA prognosis. For instance, a better prognosis is associated with IL-33 expression and low stromal IL-6 (whose secretion is stimulated by microRNA). In contrast, a worst prognosis is given by the expression of PDGF-D, podoplanin, SDF-1, α-SMA high expression, and periostin. The maturity phenotype has a prognostic relevance too. New therapeutic strategies involving CAFs are currently under study. Promising results are obtained with anti-PlGF therapy, nintedanib (BIBF1120), navitoclax, IPI-926, resveratrol, and controlled hyperthermia.

Keywords: CAF; cancer-associated fibroblast; cholangiocarcinoma; desmoplasia; prognosis; stroma; therapy; α-SMA.

Publication types

  • Review

Grants and funding

This research received no external funding.