Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain

Cell. 2022 Nov 23;185(24):4621-4633.e17. doi: 10.1016/j.cell.2022.10.021. Epub 2022 Nov 10.

Abstract

Methods for acquiring spatially resolved omics data from complex tissues use barcoded DNA arrays of low- to sub-micrometer features to achieve single-cell resolution. However, fabricating such arrays (randomly assembled beads, DNA nanoballs, or clusters) requires sequencing barcodes in each array, limiting cost-effectiveness and throughput. Here, we describe a vastly scalable stamping method to fabricate polony gels, arrays of ∼1-micrometer clonal DNA clusters bearing unique barcodes. By enabling repeatable enzymatic replication of barcode-patterned gels, this method, compared with the sequencing-dependent array fabrication, reduced cost by at least 35-fold and time to approximately 7 h. The gel stamping was implemented with a simple robotic arm and off-the-shelf reagents. We leveraged the resolution and RNA capture efficiency of polony gels to develop Pixel-seq, a single-cell spatial transcriptomic assay, and applied it to map the mouse parabrachial nucleus and analyze changes in neuropathic pain-regulated transcriptomes and cell-cell communication after nerve ligation.

Keywords: DNA array; DNA stamping; Pixel-seq; chronic pain; microcontact printing; olfactory bulb; parabrachial nucleus; polony gel; polony sequencing; spatial transcriptomics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chronic Pain*
  • DNA
  • Gels
  • Mice
  • RNA
  • Transcriptome*

Substances

  • DNA
  • RNA
  • Gels