Mouse models of Kras activation in gastric cancer

Exp Mol Med. 2022 Nov;54(11):1793-1798. doi: 10.1038/s12276-022-00882-1. Epub 2022 Nov 11.

Abstract

Gastric cancer has one of the highest incidence rates and is one of the leading causes of cancer-related mortality worldwide. Sequential steps within the carcinogenic process are observed in gastric cancer as well as in pancreatic cancer and colorectal cancer. Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most well-known oncogene and can be constitutively activated by somatic mutations in the gene locus. For over 2 decades, the functions of Kras activation in gastrointestinal (GI) cancers have been studied to elucidate its oncogenic roles during the carcinogenic process. Different approaches have been utilized to generate distinct in vivo models of GI cancer, and a number of mouse models have been established using Kras-inducible systems. In this review, we summarize the genetically engineered mouse models in which Kras is activated with cell-type and/or tissue-type specificity that are utilized for studying carcinogenic processes in gastric cancer as well as pancreatic cancer and colorectal cancer. We also provide a brief description of histological phenotypes and characteristics of those mouse models and the current limitations in the gastric cancer field to be investigated further.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Colorectal Neoplasms* / genetics
  • Disease Models, Animal
  • Mice
  • Mutation
  • Pancreatic Neoplasms* / genetics
  • Pancreatic Neoplasms* / pathology
  • Proto-Oncogene Proteins p21(ras) / genetics
  • Stomach Neoplasms* / genetics

Substances

  • Proto-Oncogene Proteins p21(ras)