Single-nucleotide polymorphisms (SNPs) of microRNAs (miRNAs) may alter miRNA transcription, maturation and target specificity, thus affecting stroke susceptibility. We aimed to investigate whether miR-200b and miR-495 SNPs may be associated with ischemic stroke (IS) risk and further explore underlying mechanisms including related genes and pathways. MiR-200b rs7549819 and miR-495 rs2281611 polymorphisms were genotyped among 712 large-artery atherosclerosis (LAA) stroke patients and 1,076 controls in a case-control study. Bioinformatic analyses were performed to explore potential association of miR-200b/495 with IS and to examine the effects of these two SNPs on miR-200b/495. Furthermore, we evaluated the association between these two SNPs and stroke using the public GWAS datasets. In our case-control study, rs7549819 was significantly associated with a decreased risk of LAA stroke (OR = 0.73, 95% CI = 0.58-0.92; p = 0.007), while rs2281611 had no significant association with LAA stroke risk. These results were consistent with the findings in East Asians from the GIGASTROKE study. Combined effects analysis revealed that individuals with 2-4 protective alleles (miR-200bC and miR-495 T) exhibited lower risk of LAA stroke than those with 0-1 variants (OR = 0.76, 95% CI = 0.61-0.96; p = 0.021). Bioinformatic analyses showed that miR-200b and miR-495 were significantly associated with genes and pathways related to IS pathogenesis, and rs7549819 and rs2281611 markedly influenced miRNA expression and structure. MiR-200b rs7549819 polymorphism and the combined genotypes of miR-200b rs7549819 and miR-495 rs2281611 polymorphisms were associated with decreased risk of LAA stroke in Chinese population.
Keywords: MiR-200b; MiR-495; Polymorphism; Stroke.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.