With rapid advances in the development of metabolic pathways and synthetic biology toolkits, a persisting challenge in microbial bioproduction is how to optimally rewire metabolic fluxes and accelerate the concomitant high-throughput phenotype screening. Here we developed a biosensor-assisted titratable CRISPRi high-throughput (BATCH) screening approach that combines a titratable mismatch CRISPR interference and a biosensor mediated screening for high-production phenotypes in Escherichia coli. We first developed a programmable mismatch CRISPRi that could afford multiple levels of interference efficacy with a one-pot sgRNA pool (a total of 16 variants for each target gene) harboring two consecutive random mismatches in the seed region of sgRNA spacers. The mismatch CRISPRi was demonstrated to enable almost a full range of gene knockdown when targeting different positions on genes. As a proof-of-principle demonstration of the BATCH screening system, we designed doubly mismatched sgRNA pools targeting 20 relevant genes in E. coli and optimized a PadR-based p-coumaric acid biosensor with broad dynamic range for the eGFP fluorescence guided high-production screening. Using sgRNA variants for the combinatorial knockdown of pfkA and ptsI, the p-coumaric acid titer was increased by 40.6% to o 1308.6 mg/l from glycerol in shake flasks. To further demonstrate the general applicability of the BATCH screening system, we recruited a HpdR-based butyrate biosensor that facilitated the screening of E. coli strains achieving 19.0% and 25.2% increase of butyrate titer in shake flasks with sgRNA variants targeting sucA and ldhA, respectively. This work reported the establishment of a plug-and-play approach that enables multilevel modulation of metabolic fluxes and high-throughput screening of high-production phenotypes.
Keywords: Biosensor; Butyrate; Mismatch CRISPRi; Titratable repression; p-Coumaric acid.
Copyright © 2022 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.