The adsorption of CO2 on nitrogen-doped graphitic carbon materials, such as graphene nanosheet (GNS) powder and highly oriented pyrolytic graphite (HOPG), was comparatively studied using temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Desorption of CO2 was observed at approximately 380 K for both pyridinic-nitrogen (pyri-N)-doped GNS and pyri-N-doped HOPG samples in the TPD experiments, whereas no CO2 desorption was observed for graphitic nitrogen-doped HOPG. This indicated that only pyri-N species create identical CO2 adsorption sites on any graphitic carbon surface. The adsorption energies of CO2 on pyri-N-doped carbons were estimated between 101 and 108 kJ mol-1, indicating that chemisorption, rather than physisorption, took place. The CO2 adsorption/desorption process was reproducible in repeated measurements, and no CO2 dissociation occurred during the process, suggesting that it is a promising CO2 capturing material. The O 1s peak of the adsorbed CO2 clearly appeared at 531.5-532 eV in the XPS measurements. The N 1s peak of pyri-N did not change with CO2 adsorption, indicating that CO2 is not directly bound to pyri-N but is adsorbed on a carbon atom near the pyridinic nitrogen via the nonbonding pz orbital of the carbon atom.