MDK induces temozolomide resistance in glioblastoma by promoting cancer stem-like properties

Am J Cancer Res. 2022 Oct 15;12(10):4825-4839. eCollection 2022.

Abstract

Glioblastoma (GBM) is the most frequently observed and aggressive type of high-grade malignant glioma. Temozolomide (TMZ) is the primary agent for GBM treatment. However, TMZ resistance remains a major challenge. In this study, we report that MDK is overexpressed in GBM, which leads to enhanced proliferation, apoptosis inhibition, increased invasion and TMZ resistance in GBM cells. It was also determined that MDK could significantly improve the stem-like properties of GBM cells. Mechanistically, MDK enhanced p-JNK through Notch1 and subsequently increased the expression of stemness markers, such as CD133 and Nanog, thereby promoting TMZ resistance. Finally, xenograft experiments and clinical sample analysis also demonstrated that MDK knockdown could significantly inhibit tumor growth in vivo, and the expression of MDK was positively correlated with Notch1, p-JNK and CD133. This study revealed that MDK induces TMZ resistance by improving the stem-like properties of GBM by upregulating the Notch1/p-JNK signaling pathway, which provides a possible target for therapeutic intervention of GBM, especially in TMZ-resistant GBM with high MDK expression.

Keywords: MDK; Notch1/p-JNK; glioblastoma; stem-like properties; temozolomide resistance.