Background and hypothesis: The field of coronary artery physiology is developing rapidly and changing the practice of interventional cardiology. A new functional evaluation technique using the instantaneous wave-free ratio (iFR) has become an alternative to fractional flow reserve. Future research studies need to determine whether physiological indicators play a role in evaluating myocardial perfusion in the catheter room.
Materials and methods: Thirty-eight patients scheduled for coronary angiography and iFR evaluation underwent a real-time myocardial contrast echocardiography (RT-MCE) examination at rest. The myocardial perfusion parameters (A, β, and A × β) on the myocardial perfusion curve were quantitatively analyzed using Q-Lab software. Coronary angiography and iFR assessment were completed within 1 week after the RT-MCE examination in all patients. Correlation analysis was used to identify iFR- and MCE-related indicators. The sensitivity and specificity of iFR in the quantitative detection of coronary microcirculation were obtained.
Results: The correlation coefficients between iFR and A, β, and A × β were 0.81, 0.66, and 0.82, respectively. The cut-off value for iFR was 0.85 for microvascular ischemia detection, while the sensitivity and specificity for the diagnosis of myocardial perfusion were 90.7 and 89.9%, respectively. The receiver operating characteristic (ROC) curve area for iFR was 0.946 in the segments related to myocardial blood flow.
Conclusion: The iFR is an effective tool for detecting myocardial microcirculation perfusion, with satisfactory diagnostic performance and a demonstrated role in physiological indices used for the perfusion assessment.
Keywords: RT-MCE; coronary microcirculation; coronary physiology; instantaneous wave-free ratio; myocardial perfusion.
Copyright © 2022 Liang, Zhu, Li, Guo, Chang, Li, Zhang and Li.