Structure-Property-Activity Relationships in Carbon Dots

J Phys Chem B. 2022 Dec 29;126(51):10777-10796. doi: 10.1021/acs.jpcb.2c06856. Epub 2022 Nov 17.

Abstract

Carbon dots (CDs) are one of the most versatile nanomaterials discovered in the 21st century. They possess many properties and thus hold potentials in diverse applications. While an increasing amount of attention has been given to these novel nanoparticles, the broad scientific community is actively engaged in exploring their limits. Recent studies on the fractionalization and assembly of CDs further push the limits beyond just CDs and demonstrate that CDs are both a mixture of heterogeneous fractions and promising building blocks for assembly of large carbon-based materials. With CDs moving forward toward both microscopic and macroscopic levels, a good understanding of the structure-property-activity relationships is essential to forecasting the future of CDs. Hence, in this Perspective, structure-property-activity relationships are highlighted based on the repeatedly verified findings in CDs. In addition, studies on CD fractionalization and assembly are briefly summarized in this Perspective. Eventually, these structure-property-activity relationships and controllability are essential for the development of CDs with desired properties for various applications especially in photochemistry, electrochemistry, nanomedicine, and surface chemistry. In summary, in our opinion, since 2004 until the present, history has witnessed a great development of CDs although there is still some room for more studies. Also, considering many attractive properties, structure-property-activity relationships, and the building block nature of CDs, a variety of carbon-based materials of interest can be constructed from CDs with control. They can help reduce blind trials in the development of carbon-based materials, which is of great significance in materials science, chemistry, and any fields related to the applications.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Carbon / chemistry
  • Nanoparticles* / chemistry
  • Nanostructures*
  • Quantum Dots* / chemistry

Substances

  • Carbon