Background: Knowledge of the histomorphometric structure of the vertebral body and factors influencing the structure is essential for a fundamental understanding of osteoporosis and osteoporotic fractures. The present study is focused on osteocyte density - a parameter seldom investigated so far - and trabecular width as well as bone area over tissue area in human vertebral bodies.
Methods: Ninety-two vertebral body specimens (C5, C6, Th8, Th12, L1, L2) from 12 males and seven females were studied (Ethics Application Number A 2017-0072). The prepared vertebral specimens were extracted from the ventral aspect with a Jamshidi needle®. The punches were decalcified and subsequently H&E stained. Using the Fiji/Image J program (version 1.53 f, Wayne Resband, National Institute of Mental Health, USA), osteocyte numbers were counted per calcified bone surface, and the trabecular width and bone area of trabecular bone were measured. The collected data were analyzed using the statistical software package SPSS, version 23.0 (SPSS Inc., Chicago, USA). Pearson's correlation coefficient was used for correlation analyses. Multiple linear regression analyses were also performed.
Results: Osteocyte density did not differ significantly in comparisons based on gender and age (≤65 years; ≥66 years). Men had wider trabeculae (p < 0.001) and a higher bone area over tissue area (BA/TA, %) (p = 0.025) than women. Individuals over 65 years of age had thinner trabeculae (p < 0.001) and a smaller BA/TA (%) (p < 0.001) than younger individuals. Multiple linear regression analyses were performed to determine the influence of 'gender' and 'age' on trabecular width and bone area over tissue area. The R² was 0.388 for trabecular width and 0.227 for BA/TA (%). Per year of life, trabecular width decreases by 0.368 µm (β < 0.001) and BA/TA (%) by 0.001% (β = 0.001). Men have on average 8.2 µm wider trabeculae than women (β = 0.035). A negative correlation (r = -0.275) was observed between trabecular width and osteocyte density. The wider the trabeculae, the fewer osteocytes per mm² (p = 0.008).
Conclusions: Surprisingly, we found no difference in osteocyte density with reference to age or gender. However, we did register significant age- and gender-related differences in bone area over tissue area and trabecular thickness. The age-related differences were more pronounced, implying that age-dependent loss of bone structure may be more important than differences between genders.
Keywords: Microarchitecture; Osteocytes density; Osteoporosis; Spine.
Copyright © 2022 Elsevier GmbH. All rights reserved.