Background and purpose: This study evaluates the quantitative measurability of glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and total tau (t-tau) in urine of patients with acute cerebral damage.
Methods: Serum and urine samples were prospectively collected from patients with an acute ischemic stroke or intracerebral hemorrhage (target group) and compared to healthy subjects (control group); samples were measured using ultrasensitive single-molecule arrays (Simoa®). Glomerular barrier function was assessed based on albumin-creatinine ratio (ACR); biomarker-creatinine ratios were calculated for correction of urine dilution.
Results: Ninety-three urine-serum pairs in the target group and 10 urine-serum pairs in the control group were measured. The mean absolute concentration ± standard deviation in urine of the target and control groups were 184.7 ± 362.4 pg/ml and 27.3 ± 24.1 pg/ml for GFAP (r = 0.3 [Wilcoxon effect size], p = 0.007), 17.5 ± 38.6 pg/ml and 0.9 ± 0.3 pg/ml for NfL (r = 0.4, p < 0.005), 320.2 ± 443.3 pg/ml and 109.6 ± 116.8 pg/ml for UCH-L1 (r = 0.26, p = 0.014), and 219.5 ± 255.8 pg/ml and 21.1 ± 27.1 pg/ml for t-tau (r = 0.37, p < 0.005), respectively, whereas biomarker-creatinine ratio was significantly different only for NfL (r = 0.29, p = 0.015) and t-tau (r = 0.32, p < 0.01). In patients with intact glomerular barrier (ACR < 30 mg/g), only NfL in urine was significantly different between the target and control group and showed a significant correlation with the respective serum concentrations (r = 0.58 [Pearson's correlation-coefficient], p < 0.005).
Conclusion: All four investigated biomarkers could be measured in urine, with NfL and t-tau showing the strongest effect size after correction for urine dilution. NfL revealed the most accurate relation between serum and urine concentrations in patients with intact kidney function.
Keywords: cerebrovascular diseases and cerebral circulation; immunoassay; laboratory methods and tools.
© 2022 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology.