The most widely used method for shaping technical blades is grinding with abrasive tools made of cubic boron nitride (cBN) grains and vitrified bond. The goal of this work was to determine the effect of grinding wheel grain size (cBN grain number according to FEPA standards: B126, B181 and B251), kinematics (grinding with the circumference, face and conical surface of the wheel) and feed rate (vf = 100; 150; 200 mm/min) on the effects of the grinding process evaluated by the cutting force of the blade after machining F, blade surface texture parameters (Sa, St, Smvr, Str, Sdq, Sdr and Sbi) as well as blade surface morphology. An analysis of output quantities showed that grinding wheels made of B181 cBN grains are most favorable for shaping planar technical blades of X39Cr13 steel in the grinding process.
Keywords: cBN abrasive grain; cutting blade; food processing; grinding; sharpening; vitrified bond.