In this study, a heat-resistant and high-wettability lithium-ion batteries separator (PI-CPM-PI) composed of cellulose nanofibers (CNF) and aramid fibers (PMIA chopped fiber/PPTA pulp) with the reinforced concrete structure was fabricated via a traditional heterogeneous paper-making process. CNF played crucial roles in optimizing the pore structure and improving the wettability of PI-CPM-PI separator. The effects of composition on separator properties were investigated and the results indicated that the optimal compositions were 0.5 wt% CNF, 0.5 wt% PMIA chopped fiber/PPTA pulp (ratio of 5:5), 0.05 wt% diatomite and 1.5 wt% polyimide. Relevant tests demonstrated that the performance advantages of PI-CPM-PI separators were exhibited at the wettability and thermal stability compared to the commercial separator (PP). Additionally, batteries assembled with PI-CPM-PI separators showed excellent electrochemical and cycling performance (ionic conductivity of 1.041 mS.cm-1, the first discharge capacity of 158.2 mAh.g-1 at 0.2C and capacity retention ratio of 99.76 % after 100 cycles).
Keywords: Aramid fiber; Cellulose nanofibers; Heterogeneous method; Inorganic−organic hybrid; Separator.
Copyright © 2022 Elsevier B.V. All rights reserved.