Deciphering the Morphology Change and Performance Enhancement for Perovskite Solar Cells Induced by Surface Modification

Adv Sci (Weinh). 2023 Jan;10(3):e2205342. doi: 10.1002/advs.202205342. Epub 2022 Dec 1.

Abstract

Organic-inorganic perovskite solar cells (PSCs) have achieved great attention due to their expressive power conversion efficiency (PCE) up to 25.7%. To improve the photovoltaic performance of PSCs, interface engineering between the perovskite and hole transport layer (HTL) is a widely used strategy. Following this concept, benzyl trimethyl ammonium chlorides (BTACls) are used to modify the wet chemical processed perovskite film in this work. The BTACl-induced low dimensional perovskite is found to have a bilayer structure, which efficiently decreases the trap density and improves the energy level alignment at the perovskite/HTL interface. As a result, the BTACl-modified PSCs show an improved PCE compared to the control devices. From device modeling, the reduced charge carrier recombination and promoted charge carrier transfer at the perovskite/HTL interface are the cause of the open-circuit (Voc ) and fill factor (FF) improvement, respectively. This study gives a deep understanding for surface modification of perovskite films from a perspective of the morphology and the function of enhancing photovoltaic performance.

Keywords: BTACl modification; device physics; low dimensional perovskites; morphology; perovskite solar cells.