Background: Low quantities of circulating progenitor cells (CPCs), specifically CD34+ populations, reflect impairment of intrinsic regenerative capacity. This study investigates the relationship between subsets of CPCs and adverse outcomes.
Methods: 1366 individuals undergoing angiography for evaluation of coronary artery disease (CAD) were enrolled into the Emory Cardiovascular Biobank. Flow cytometry identified CPCs as CD45med blood mononuclear cells expressing the CD34 epitope, with further enumeration of hematopoietic CPCs as CD133+/CXCR4+ cells and endothelial CPCs as vascular endothelial growth factor receptor-2 (VEGFR2+) cells. Adjusted Cox or Fine and Gray's sub-distribution hazard regression models analyzed the relationship between CPCs and 1) all-cause death and 2) a composite of cardiovascular death and non-fatal myocardial infarction (MI).
Results: Over a median 3.1-year follow-up period (IQR 1.3-4.9), there were 221 (16.6%) all-cause deaths and 172 (12.9%) cardiovascular deaths/MIs. Hematopoietic CPCs were highly correlated, and the CD34+/CXCR4+ subset was the best independent predictor. Lower counts (≤median) of CD34+/CXCR4+ and CD34+/VEGFR2+ cells independently predicted all-cause mortality (HR 1.46 [95% CI 1.06-2.01], p = 0.02 and 1.59 [95% CI 1.15-2.18], p = 0.004) and cardiovascular death/MI (HR 1.50 [95% CI 1.04-2.17], p = 0.03 and 1.47 [95% CI 1.01-2.03], p = 0.04). A combination of low CD34+/CXCR4+ and CD34+/VEGFR2+ CPCs predicted all-cause death (HR 2.1, 95% CI 1.4-3.0; p = 0.0002) and cardiovascular death/MI (HR 2.0, 95% CI 1.3-3.2; p = 0.002) compared to those with both lineages above the cut-offs.
Conclusions: Lower levels of hematopoietic and endothelial CPCs indicate diminished endogenous regenerative capacity and independently correlate with greater mortality and cardiovascular risk in patients with CAD.
Keywords: Biomarkers; CD34; Coronary artery disease; Progenitor cells; Risk assessment.
Copyright © 2022 Elsevier B.V. All rights reserved.