Objectives: To describe the pharmacokinetic/pharmacodynamic (PK/PD) behaviour of continuous infusion (CI) ceftazidime-avibactam and the microbiological outcome in a case series of critically ill renal patients treated for documented carbapenem-resistant Gram-negative (CR-GN) bloodstream infections (BSI) and/or ventilator-associated pneumonia (VAP).
Methods: Critically ill patients with different degrees of renal function who were treated with CI ceftazidime-avibactam for documented CR-GN infections, and who underwent therapeutic drug monitoring from April 2021 to March 2022, were retrospectively assessed. Ceftazidime and avibactam concentrations were determined at steady-state, and the free fraction (fCss) was calculated. The joint PK/PD target of ceftazidime-avibactam was considered as optimal when both Css/MIC ratio for ceftazidime ≥4 (equivalent to 100%fT>4xMIC) and Css/CT ratio for avibactam >1 (equivalent to 100% fT>CT of 4.0 mg/L) were simultaneously achieved (quasi-optimal if only one of the two was achieved, and suboptimal if neither of the two was achieved). The relationship between ceftazidime-avibactam PK/PD targets and microbiological outcome was assessed.
Results: Ten patients with documented CR-GN infections (5 BSIs, 4 VAP, 1 BSI+VAP) were retrieved. The joint PK/PD targets of ceftazidime-avibactam were optimal and quasi-optimal in eight and two cases, respectively. Microbiological failure occurred in two patients (one with VAP, one with BSI+VAP), one of whom developed ceftazidime-avibactam resistance. Both underwent renal replacement therapy, and failed despite attaining optimal joint PK/PD target and receiving fosfomycin co-treatment.
Conclusion: CI administration may enable optimal joint PK/PD targets of ceftazidime-avibactam to be achieved in most critical renal patients with CR-GN infections, and may help to minimize the risk of microbiological failure.
Keywords: PK/PD target attainment; carbapenem-resistant Gram-negative infections; ceftazidime-avibactam; continuous infusion; critical renal patients; microbiological failure.
Copyright © 2022 Elsevier Ltd and International Society of Antimicrobial Chemotherapy. All rights reserved.