Background: Social media contains an overabundance of health information relating to people living with different type of diseases. Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with lifelong impacts and reported trends have revealed a considerable increase in prevalence and incidence. Research had shown that the ASD community provides significant support to its members through Twitter, providing information about their values and perceptions through their use of words and emotional stance. Our purpose was to analyze all the messages posted on Twitter platform regarding ASD and analyze the topics covered within the tweets, to understand the attitude of the various people interested in the topic. In particular, we focused on the discussion of ASD and COVID-19.
Methods: The data collection process was based on the search for tweets through hashtags and keywords. After bots screening, the NMF (Non-Negative Matrix Factorization) method was used for topic modeling because it produces more coherent topics compared to other solutions. Sentiment scores were calculated using AFiNN for each tweet to represent its negative to positive emotion.
Results: From the 2.458.929 tweets produced in 2020, 691.582 users were extracted (188 bots which generated 59.104 tweets), while from the 2.393.236 total tweets from 2019, the number of identified users was 684.032 (230 bots which generated 50.057 tweets). The total number of COVID-ASD tweets is only a small part of the total dataset. Often, the negative sentiment identified in the sentiment analysis referred to anger towards COVID-19 and its management, while the positive sentiment reflected the necessity to provide constant support to people with ASD.
Conclusions: Social media contributes to a great discussion on topics related to autism, especially with regards to focus on family, community, and therapies. The COVID-19 pandemic increased the use of social media, especially during the lockdown period. It is important to help develop and distribute appropriate, evidence-based ASD-related information.
Keywords: Autism spectrum disorders; Content analysis, COVID-19; Public health; Sentiment analysis; Social media; Twitter Messagging.
© The Author(s) 2022.