Poly(acridan-grafted biphenyl germanium) with High Triplet Energy as a Universal Host for High-Efficiency Thermally Activated Delayed Fluorescence Full-Color Devices and Their Hybrid with Phosphor for White Light Electroluminescence

ACS Appl Mater Interfaces. 2022 Dec 21;14(50):55873-55885. doi: 10.1021/acsami.2c17703. Epub 2022 Dec 7.

Abstract

Developing an effective host for highly efficient full-color electroluminescence devices through a solution-process is still a challenge at present. Here, we use the σ-π conjugated polymer, poly(acridan grafted biphenyl germanium) P(DMAC-Ge), having the highest triplet energy (ET) 2.86 eV among conjugated polymers as the host in sky-blue phosphorescence, TADFs (blue (B), green (G), and red (R)), and hybrid white (W) PLEDs. Upon doping with a sky-blue phosphor-emitter (Firpic), the resulting device gives the high EQEmax 19.7% with Bmax 24,918 cd/m2. The Ge-containing polymer backbone can provide as a channel for electron transport and charge trap into the guest as manifested by the electroluminescence dynamics. Further introducing the bipolar material DCzPPy as cohost, the devices with a sky-blue phosphor (Firpic) and each of the TADF-guests─B (DMAC-TRZ), G (DACT-II), and R (TPA-DCPP) in the EML─achieve the high maximum EQEs as 19.7%, 19.4%, 21.5% and 3.82% with the emission peaks at 470, 485, 508, and 630 nm, respectively. As the three guests (DMAC-TRZ, Ir-O, Ir-R) are doped together into the emitting layer, we obtain a TADF-phosphor (T-P) hybrid white PLED giving a record-high EQE 22.5% among the solution processed hybrid OLED with CIE (0.34, 0.40) and Bmax 28,945 cd/m2. These results manifest that P(DMAC-Ge) is a potential polymer host for full-color TADF and hybrid white light PLEDs with high performance.

Keywords: high triplet energy; phosphorescence; polymer light-emitting diode (PLED); solution-processed; thermally activated delayed fluorescence (TADF).