Ultrawide Hydrazine Concentration Monitoring Sensor Comprising Ir-Ni Nanoparticles Decorated with Multi-Walled Carbon Nanotubes in On-Site Alkaline Fuel Cell Operation

ChemSusChem. 2023 Mar 8;16(5):e202201608. doi: 10.1002/cssc.202201608. Epub 2023 Jan 9.

Abstract

A highly sensitive amperometric hydrazine monitoring sensor offering an ultrawide dynamic range of 5 μM to 1 M in alkaline media (e. g., 1 M KOH) was developed via co-electrodepositing iridium-nickel alloy nanoparticles (NPs) functionalized with multi-walled carbon nanotubes (Ir-Ni-MWCNTs) on a disposable screen-printed carbon electrode. The synergistic interaction of MWCNTs with Ir-Ni alloy NPs resulted in enlarged active surface area, rapid electron transfer, and alkaline media stability with an onset potential of -0.12 V (vs. Ag/AgCl) toward hydrazine oxidation. A limit of detection for hydrazine was 0.81 μM with guaranteed reproducibility, repeatability, and storage stability alongside a superb selectivity toward ethanolamine, urea, dopamine, NaBH4 , NH4 OH, NaNO2 , and Na2 CO3 . The sensor was finally applied to on-site monitoring of the carbon-free hydrazine concentration at the anode and cathode of a hydrazine fuel cell, providing more insight into the hydrazine oxidation process during cell operation.

Keywords: Ir−Ni nanoparticles-multi-walled carbon nanotubes; alkaline media; electro-oxidation; hydrazine; hydrazine fuel cell.