Nanomechanical Stability of Laterally Heterogeneous Films of Corrosion Inhibitor Molecules Obtained by Microcontact Printing on Au Model Substrates

Langmuir. 2022 Dec 20;38(50):15614-15621. doi: 10.1021/acs.langmuir.2c02276. Epub 2022 Dec 9.

Abstract

Self-assembled monolayers of corrosion inhibitors of the mercaptobenzimidazole family, SH-BimH, SH-BimH-5NH2, and SH-BimH-5OMe, were formed on template-stripped ultraflat Au surfaces using microcontact printing, and subsequently analyzed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and AFM-force spectroscopy (AFM-FS) using a quantitative imaging (QI) mode. Printing of all used inhibitor molecules resulted in clear patterns and in slightly more compact films compared to immersion. The stability of the monolayers is further probed by AFM-FS. Adhesion values of laterally heterogeneous inhibitor-modified surfaces compared to bare Au surfaces, nonpatterned areas, and fully covered surfaces are analyzed and discussed. Microcontact printing confers a superior nanomechanical stability to imidazole-modified films of the printed surface patches as compared to homogeneously covered surfaces by immersion into the inhibitor solution.