Affective experience colours everyday perception and cognition, yet its fundamental and neurobiological basis is poorly understood. The current debate essentially centers around the communalities and specificities across individuals, events, and emotional categories like anger, sadness, and happiness. Using fMRI during the experience of these emotions, we critically compare the two dominant conflicting theories on human affect. Basic emotion theory posits emotions as discrete universal entities generated by dedicated emotion category-specific neural circuits, while psychological construction theory claims emotional events as unique, idiosyncratic, and constructed by psychological primitives like core affect and conceptualization, which underlie each emotional event and operate in a predictive framework. Based on the findings of 8 a priori-defined model-specific prediction tests on the neural response amplitudes and patterns, we conclude that the neurobiological basis of affect is primarily characterized by idiosyncratic mechanisms and a common neural basis shared across emotion categories, consistent with psychological construction theory. The findings provide further insight into the organizational principles of the neural basis of affect and brain function in general. Future studies in clinical populations with affective symptoms may reveal the corresponding underlying neural changes from a psychological construction perspective.
© 2022. The Author(s).