Acetylphenyl-substituted imidazolium salts: synthesis, characterization, in silico studies and inhibitory properties against some metabolic enzymes

Mol Divers. 2023 Dec;27(6):2767-2787. doi: 10.1007/s11030-022-10578-3. Epub 2022 Dec 12.

Abstract

Herein, we present how to synthesize thirteen new 1-(4-acetylphenyl)-3-alkylimidazolium salts by reacting 4-(1-H-imidazol-1-yl)acetophenone with a variety of benzyl halides that contain either electron-donating or electron-withdrawing groups. The structures of the new imidazolium salts were conformed using different spectroscopic methods (1H NMR, 13C NMR, 19F NMR, and FTIR) and elemental analysis techniques. Furthermore, these compounds' the carbonic anhydrase (hCAs) and acetylcholinesterase (AChE) enzyme inhibition activities were investigated. They showed a highly potent inhibition effect toward AChE and hCAs with Ki values in the range of 8.30 ± 1.71 to 120.77 ± 8.61 nM for AChE, 16.97 ± 2.04 to 84.45 ± 13.78 nM for hCA I, and 14.09 ± 2.99 to 69.33 ± 17.35 nM for hCA II, respectively. Most of the synthesized imidazolium salts appeared to be more potent than the standard inhibitor of tacrine (TAC) against AChE and Acetazolamide (AZA) against CA. In the meantime, to prospect for potential synthesized imidazolium salt inhibitor(s) against AChE and hCAs, molecular docking and an ADMET-based approach were exerted.

Keywords: ADMET; Acetyl group; Acetylcholinesterase; Carbonic anhydrase; Imidazolium salt; Molecular docking.

MeSH terms

  • Acetylcholinesterase / metabolism
  • Carbonic Anhydrase I / chemistry
  • Carbonic Anhydrase I / metabolism
  • Carbonic Anhydrase II / chemistry
  • Carbonic Anhydrase II / metabolism
  • Carbonic Anhydrase Inhibitors / chemistry
  • Carbonic Anhydrase Inhibitors / pharmacology
  • Cholinesterase Inhibitors* / chemistry
  • Molecular Docking Simulation
  • Molecular Structure
  • Salts* / pharmacology
  • Structure-Activity Relationship

Substances

  • Salts
  • Cholinesterase Inhibitors
  • Acetylcholinesterase
  • Carbonic Anhydrase I
  • Carbonic Anhydrase Inhibitors
  • Carbonic Anhydrase II