Theoretical and Experimental Study of the Spectroscopy and Thermochemistry of UC+/0/

J Phys Chem A. 2022 Dec 22;126(50):9392-9407. doi: 10.1021/acs.jpca.2c06978. Epub 2022 Dec 12.

Abstract

A combination of high-level ab initio calculations and anion photoelectron detachment (PD) measurements is reported for the UC, UC-, and UC+ molecules. To better compare the theoretical values with the experimental photoelectron spectrum (PES), a value of 1.493 eV for the adiabatic electron affinity (AEA) of UC was calculated at the Feller-Peterson-Dixon (FPD) level. The lowest vertical detachment energy (VDE) is predicted to be 1.500 eV compared to the experimental value of 1.487 ± 0.035 eV. A shoulder to lower energy in the experimental PD spectrum with the 355 nm laser can be assigned to a combination of low-lying excited states of UC- and excited vibrational states. The VDEs calculated for the low-lying excited electronic states of UC at the SO-CASPT2 level are consistent with the observed additional electron binding energies at 1.990, 2.112, 2.316, and 3.760 eV. Potential energy curves for the Ω states and the associated spectroscopic properties are also reported. Compared to UN and UN+, the bond dissociation energy (BDE) of UC (411.3 kJ/mol) is predicted to be considerably lower. The natural bond orbitals (NBO) calculations show that the UC0/+/- molecules have a bond order of 2.5 with their ground-state configuration arising from changes in the oxidation state of the U atom in terms of the 7s orbital occupation: UC (5f27s1), UC- (5f27s2), and UC+ (5f27s0). The behavior of the UN and UC sequence of molecules and anions differs from the corresponding sequences for UO and UF.