Background: To develop an artificial intelligence-based model to predict recurrence after curative resection for stage I-III colorectal cancer from digitized pathological slides.
Patients and methods: In this retrospective study, 471 consecutive patients who underwent curative resection for stage I-III colorectal cancer at our institution from 2004 to 2015 were enrolled, and 512 randomly selected tiles from digitally scanned images of hematoxylin and eosin-stained tumor tissue sections were used to train a convolutional neural network. Five-fold cross-validation was used to validate the model. The association between recurrence and the model's output scores were analyzed in the test cohorts.
Results: The area under the receiver operating characteristic curve of the cross-validation was 0.7245 [95% confidence interval (CI) 0.6707-0.7783; P < 0.0001]. The score successfully classified patients into those with better and worse recurrence free survival (P < 0.0001). Multivariate analysis revealed that a high score was significantly associated with worse recurrence free survival [odds ratio (OR) 1.857; 95% CI 1.248-2.805; P = 0.0021], which was independent from other predictive factors: male sex (P = 0.0238), rectal cancer (P = 0.0396), preoperative abnormal carcinoembryonic antigen (CEA) level (P = 0.0216), pathological T3/T4 stage (P = 0.0162), and pathological positive lymph node metastasis (P < 0.0001).
Conclusions: The artificial intelligence-based prediction model discriminated patients with a high risk of recurrence. This approach could help decision-makers consider the benefits of adjuvant chemotherapy.
© 2022. Society of Surgical Oncology.