Grassland ecosystem type drives AM fungal diversity and functional guild distribution in North American grasslands

Mol Ecol. 2023 Mar;32(5):1133-1148. doi: 10.1111/mec.16823. Epub 2023 Jan 10.

Abstract

Nutrient exchange forms the basis of the ancient symbiotic relationship that occurs between most land plants and arbuscular mycorrhizal (AM) fungi. Plants provide carbon (C) to AM fungi and fungi provide the plant with nutrients such as nitrogen (N) and phosphorous (P). Nutrient addition can alter this symbiotic coupling in key ways, such as reducing AM fungal root colonization and changing the AM fungal community composition. However, environmental parameters that differentiate ecosystems and drive plant distribution patterns (e.g., pH, moisture), are also known to impact AM fungal communities. Identifying the relative contribution of environmental factors impacting AM fungal distribution patterns is important for predicting biogeochemical cycling patterns and plant-microbe relationships across ecosystems. To evaluate the relative impacts of local environmental conditions and long-term nutrient addition on AM fungal abundance and composition across grasslands, we studied experimental plots amended for 10 years with N, P, or N and P fertilizer in different grassland ecosystem types, including tallgrass prairie, montane, shortgrass prairie, and desert grasslands. Contrary to our hypothesis, we found ecosystem type, not nutrient treatment, was the main driver of AM fungal root colonization, diversity, and community composition, even when accounting for site-specific nutrient limitations. We identified several important environmental drivers of grassland ecosystem AM fungal distribution patterns, including aridity, mean annual temperature, root moisture, and soil pH. This work provides empirical evidence for niche partitioning strategies of AM fungal functional guilds and emphasizes the importance of long-term, large scale research projects to provide ecologically relevant context to nutrient addition studies.

Keywords: community ecology; ecological genetics; fungi; microbial ecology; mycorrhizae; nutrient network.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ecosystem
  • Fungi / genetics
  • Grassland
  • Mycorrhizae*
  • North America
  • Plant Roots / microbiology
  • Plants / microbiology
  • Soil / chemistry
  • Soil Microbiology

Substances

  • Soil