Aquifers have significant social, economic, and ecological importance. They supply 30 % of the freshwater for human consumption worldwide, including agricultural and industrial use. Despite aquifers' importance, the relationships between aquifer categories and their inhabiting microbial communities are still unknown. Characterizing variations within microbial communities' function and taxonomy structure at different aquifers could give a panoramic view of patterns that may enable the detection and prediction of environmental impact caused by multiple sources. Using publicly available shotgun metagenomic datasets, we examined whether soil properties, land use, and climate variables would have a more significant influence on the taxonomy and functional structure of the microbial communities than the ecological landscapes of the aquifer (i.e., Karst, Porous, Saline, Geyser, and Porous Contaminated). We found that these categories are stronger predictors of microbial communities' structure than geographical localization. In addition, our results show that microbial richness and dominance patterns are the opposite of those found in multicellular life, where extreme habitats harbour richer functional and taxonomic microbial communities. We found that low-abundant and recently described candidate taxa, such as the chemolithoautotrophic genus Candidatus Altiarcheum and the Candidate phylum Parcubacteria, are the main contributors to aquifer microbial communities' dissimilarities. Genes related to gram-negative bacteria proteins, cell wall structures, and phage activity were the primary contributors to aquifer microbial communities' dissimilarities among the aquifers' ecological landscapes. The results reported in the present study highlight the utility of using ecological landscapes for investigating aquifer microbial communities. In addition, we suggest that functions played by recently described and low abundant bacterial groups need further investigation once they might affect water quality, geochemical cycles, and the effects of anthropogenic disturbances such as pollution and climatic events on aquifers.
Keywords: Aquifer microbiomes; Candidate phyla; Groundwater; Metagenomics; Rare microbiome.
Copyright © 2023 Elsevier B.V. All rights reserved.