Most ornithophilous plants have red flowers; this has been associated with 'the bee avoidance hypothesis', in which ornithophilous flowers may bear colors that are less conspicuous to bees than melittophilous flowers. In the genus Camellia, C. rusticana and C. japonica bear red flowers and yet recruit different pollinators; the former is entomophilous, while the latter is ornithophilous. C. japonica is considered to have been speciated from a common ancestor later than C. rusticana, accompanying a pollinator shift from insects to birds. Nevertheless, factors explaining the pollinator difference in camellias remain rudimentary. In this study, the color traits of the two camellias were investigated, to determine their color strategy to allure different pollinators. The behavior of bees towards the two camellias was examined by a two-choice assay. Flower color characteristics of the two camellias were analyzed with diffuse reflectance and fluorescence spectra. Based on the visual sensory system of bees and birds, the achromatic contrast, chromatic contrast, intensity, and spectral purity of the two species were evaluated, testing the bee avoidance hypothesis. Furthermore, the compounds responsible for the fluorescence, likely serving as a visual attractant, were identified by NMR and MS. Bees visited C. rusticana flowers almost exclusively and C. japonica hardly at all. Reflectance spectral data showed that C. rusticana petals are more conspicuous to bees than birds due to a UV-reflection secondary peak; and that C. japonica petals exhibited crucially low chromatic contrast against a leaf background to bees, suggesting them to be almost indistinguishable. On the other hand, C. japonica flowers appeared conspicuous to birds. The anthers of C. rusticana exhibited blue fluorescence derived from two anthranilates, while those of C. japonica did not. The two camellias offer different color strategies to be conspicuous to their respective pollinators, and C. japonica seemed to have evolved to avoid bees. Alterations in these color traits may have played a role in pollinator shift.
Keywords: Anthranilate; Bee avoidance hypothesis; Camellia japonica L.; Camellia rusticana Honda; Japanese camellia; Pollination syndrome; Pollinator shift; Snow camellia; Theaceae.
Copyright © 2022 Elsevier Ltd. All rights reserved.