Contaminated drinking water (DW) is a major source of exposure to per- and polyfluoroalkyl substances (PFAS) at locations around PFAS production/use facilities and military airports. This study aimed to investigate quantitative relationships between concentrations in DW and serum of nine perfluoroalkyl acids (PFAAs) in Swedish adult populations living near contamination hotspots. Short-chained (PFPeA, PFHxA, PFHpA, and PFBS) and long-chained PFAAs (PFOA, PFNA, PFDA, PFHxS and PFOS) were measured in DW and serum. We matched DW and serum concentrations for a total of 398 subjects living or working in areas receiving contaminated DW and in one non-contaminated area. Thereafter, linear regression analysis with and without adjustments for co-variates was conducted. This enabled to derive (i) serum concentrations at background exposure (CB) from sources other than local DW exposure (i.e. food, dust and textiles) at 0 ng/L DW concentration, (ii) population-mean PFAA serum:water ratios (SWR) and (iii) PFAA concentrations in DW causing observable elevated serum PFAA concentrations above background variability. Median concentrations of the sum of nine PFAAs ranged between 2.8 and 1790 ng/L in DW and between 7.6 and 96.9 ng/mL in serum. DW concentration was the strongest predictor, resulting in similar unadjusted and adjusted regression coefficients. Mean CB ranged from <0.1 (PFPeA, PFHpA, PFBS) to 5.1 ng/mL (PFOS). Serum concentrations increased significantly with increasing DW concentrations for all PFAAs except for PFPeA with SWRs ranging from <10 (PFHxA, PFHpA and PFBS) to 111 (PFHxS). Observed elevated serum concentrations above background variability were reached at DW concentrations between 24 (PFOA) and 357 ng/L (PFHxA). The unadjusted linear regression predictions agreed well with serum concentrations previously reported in various populations exposed to low and high DW levels of PFOA, PFHxS and PFOS. The quantitative relationships derived herein should be helpful to translate PFAA concentrations in DW to concentrations in serum at the population level.
Keywords: Bioaccumulation; Human biomonitoring; PFAS; Risk assessment; Tap water; Toxicokinetics.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.