Decoding the heterogeneity of Alzheimer's disease diagnosis and progression using multilayer networks

Mol Psychiatry. 2023 Jun;28(6):2423-2432. doi: 10.1038/s41380-022-01886-z. Epub 2022 Dec 20.

Abstract

Alzheimer's disease (AD) is a multifactorial and heterogeneous disorder, which makes early detection a challenge. Studies have attempted to combine biomarkers to improve AD detection and predict progression. However, most of the existing work reports results in parallel or compares normalized findings but does not analyze data simultaneously. We tested a multi-dimensional network framework, applied to 490 subjects (cognitively normal [CN] = 147; mild cognitive impairment [MCI] = 287; AD = 56) from ADNI, to create a single model capable of capturing the heterogeneity and progression of AD. First, we constructed subject similarity networks for structural magnetic resonance imaging, amyloid-β positron emission tomography, cerebrospinal fluid, cognition, and genetics data and then applied multilayer community detection to find groups with shared similarities across modalities. Individuals were also followed-up longitudinally, with AD subjects having, on average, 4.5 years of follow-up. Our findings show that multilayer community detection allows for accurate identification of present and future AD (≈90%) and is also able to identify cases that were misdiagnosed clinically. From all MCI participants who developed AD or reverted to CN, the multilayer model correctly identified 90.8% and 88.5% of cases respectively. We observed similar subtypes across the full sample and when examining multimodal data from subjects with no AD pathology (i.e., amyloid negative). Finally, these results were also validated using an independent testing set. In summary, the multilayer framework is successful in detecting AD and provides unique insight into the heterogeneity of the disease by identifying subtypes that share similar multidisciplinary profiles of neurological, cognitive, pathological, and genetics information.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alzheimer Disease* / diagnostic imaging
  • Alzheimer Disease* / genetics
  • Amyloid beta-Peptides
  • Biomarkers / cerebrospinal fluid
  • Cognition
  • Cognitive Dysfunction* / diagnosis
  • Cognitive Dysfunction* / genetics
  • Disease Progression
  • Humans
  • Magnetic Resonance Imaging
  • Neuroimaging / methods

Substances

  • Amyloid beta-Peptides
  • Biomarkers