Human choriogonadotropin (hCG) is a placental glycoprotein hormone composed of a 92-amino acid alpha subunit noncovalently linked to a 145-amino acid beta subunit. We report here the expression of biologically active hCG in mouse C127 cells transfected with expression vectors containing the DNA coding for both subunits. In addition, the same cell line was used to express the alpha subunit alone. The expression products were purified by affinity chromatography using specific monoclonal antibodies to hCG or its subunits. The system secreting biologically active hCG also produced a 10-fold or greater molar excess of free beta subunit. The dimeric hormone, as well as the excess beta subunit, resembles the standard urinary hCG and beta subunit by chemical and biological criteria. In contrast, when the vector encoding for the alpha subunit was expressed alone, the alpha subunit had a higher molecular weight than both standard alpha and the alpha found in the expressed dimeric hormone. The molecular weight difference between expressed alpha subunit and standard alpha was found to reside in the alpha peptide consisting of residues 52-91 which contained all of the carbohydrate of the alpha subunit. The N-asparagine-linked carbohydrate moieties in the recombinant alpha were found to be triantennary in contrast to biantennary in urinary alpha, and this hyperglycosylation was responsible for the higher molecular weight of the alpha subunit when it was expressed alone. We found no evidence of O-threonine glycosylation at position alpha 39 reported to be present in free forms of the alpha subunit; however, the companion paper (Corless, C.L., Bielinska, M., Ramabhadran, T. V., Daniels-McQueen, S. Otani, T., Reitz, B. A., Tiemeier, D. C., and Boime, I. (1987) J. Biol Chem. 262, 14197-14203) finds a small quantity of O-glycosylation. Since the excess beta subunit appears to be of normal size and contains the expected complement of sugars, only free alpha subunit seems to be a potential substrate for addition of extra sugar moieties. No large beta subunit forms have been found by others, while large alpha subunits have been described both clinically and in tissue culture systems. These observations imply that the conformation of the free alpha subunit, in the regions of the glycosylation recognition sites, allows easier access for glycosyltransferases than those same sites in the beta subunit. When alpha is combined with beta, the local structures around the alpha glycosylation sites are apparently altered so as to make the synthesis of triantennary chains less favorable.