Profiling the T-Cell Receptor (TCR) repertoire is establishing as a potent approach to investigate autologous and treatment-induced antitumor immune response. Technical and computational breakthroughs, including high throughput next-generation sequencing (NGS) approaches and spatial transcriptomics, are providing unprecedented insight into the mechanisms underlying antitumor immunity. A precise spatiotemporal variation of T-cell repertoire, which dynamically mirrors the functional state of the evolving host-cancer interaction, allows the tracking of the T-cell populations at play, and may identify the key cells responsible for tumor eradication, the evaluation of minimal residual disease and the identification of biomarkers of response to immunotherapy. In this review we will discuss the relationship between global metrics characterizing the TCR repertoire such as T-cell clonality and diversity and the resultant functional responses. In particular, we will explore how specific TCR repertoires in cancer patients can be predictive of prognosis or response to therapy and in particular how a given TCR re-arrangement, following immunotherapy, can predict a specific clinical outcome. Finally, we will examine current improvements in terms of T-cell sequencing, discussing advantages and challenges of current methodologies.
Keywords: Biomarker; Cancer; Cancer vaccination; Clonality; Diversity; Immune checkpoint inhibitors; Repertoire; Single-cell; T-Cell Receptor; TCR-seq.
© 2022. The Author(s).