Here, we examined the dynamics of the gut and respiratory microbiomes in severe COVID-19 patients in need of mechanical ventilation in the intensive care unit (ICU). We recruited 85 critically ill patients (53 with COVID-19 and 32 without COVID-19) and 17 healthy controls (HCs) and monitored them for up to 4 weeks. We analyzed the bacterial and fungal taxonomic profiles and loads of 232 gut and respiratory samples and we measured the blood levels of Interleukin 6, IgG, and IgM in COVID-19 patients. Upon ICU admission, the bacterial composition and load in the gut and respiratory samples were altered in critically ill patients compared with HCs. During their ICU stay, the patients experienced increased bacterial and fungal loads, drastic decreased bacterial richness, and progressive changes in bacterial and fungal taxonomic profiles. In the gut samples, six bacterial taxa could discriminate ICU-COV(+) from ICU-COV(-) cases upon ICU admission and the bacterial taxa were associated according to age, PaO2/FiO2, and CRP levels. In the respiratory samples of the ICU-COV(+) patients, bacterial signatures including Pseudomonas and Streptococcus were found to be correlated with the length of ICU stay. Our findings demonstrated that the gut and respiratory microbiome dysbiosis and bacterial signatures associated with critical illness emerged as biomarkers of COVID-19 severity and could be a potential predictor of ICU length of stay. We propose using a high-throughput sequencing approach as an alternative to traditional isolation techniques to monitor ICU patient infection.
Keywords: bacterial and fungal microbiome; composition and load; gut and lung; mechanical ventilation; severe COVID-19 cases in ICU.