circPVT1 and PVT1/AKT3 show a role in cell proliferation, apoptosis, and tumor subtype-definition in small cell lung cancer

Genes Chromosomes Cancer. 2023 Jul;62(7):377-391. doi: 10.1002/gcc.23121. Epub 2023 Jan 23.

Abstract

Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.

Keywords: MYC; PVT1; circular RNA; fusion transcript; small cell lung cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / genetics
  • Cell Line, Tumor
  • Cell Proliferation / genetics
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Lung Neoplasms* / genetics
  • Proto-Oncogene Proteins c-akt / genetics
  • Small Cell Lung Carcinoma* / genetics

Substances

  • AKT3 protein, human
  • Proto-Oncogene Proteins c-akt