Background: Long non-coding RNAs (lncRNAs) are key regulators of gene expression. Some studies have reported the association of polymorphisms in lncRNA genes with diabetes mellitus (DM) and its chronic complications, including diabetic kidney disease (DKD); however, the results are still inconclusive. Thus, we investigated the association of the rs3200401/MALAT1, rs1894720/MIAT, rs3931283/PVT1, rs11993333/PVT1, rs5749201/TUG1, and rs7158663/MEG3 polymorphisms with DKD in patients with type 2 DM (T2DM).
Methods and results: This study comprised 902 patients with T2DM and DKD (cases) and 394 patients with T2DM without DKD (controls). The six polymorphisms of interest were genotyped by real-time PCR using TaqMan probes. Frequency of the rs3931283/PVT1 G/G genotype was 36.2% in cases and 31.9% in controls (P = 0.331). After adjustment for gender, glycated hemoglobin, HDL cholesterol, ethnicity, hypertension, and diabetic retinopathy, the G/G genotype was associated with risk for DKD (OR = 1.625, 95% CI 1.020-2.588; P = 0.041). The rs3931283/PVT1 G/G genotype was also associated with higher urinary albumin excretion levels compared to A allele carriers (P = 0.017). No difference was found in rs7158663/MEG3 genotype frequencies between T2DM controls and DKD patients (OR = 1.087, 95% CI 0.686-1.724; P = 0.722). However, the rs7158663/MEG3 G/G genotype was associated with protection against severe DKD (OR = 0.694, 95% CI 0.488-0.989; P = 0.043, for patients with severe DKD vs. T2DM controls). The rs7158663/MEG3 G/G genotype was also associated with lower creatinine levels (P = 0.007) and higher estimated glomerular filtration rate (P = 0.010) compared to A allele carriers. No association was found between the rs11993333/PVT1, rs3200401/MALAT1, rs1894720/MIAT, and rs5749201/TUG1 polymorphisms and DKD or its laboratory markers.
Conclusion: The rs3931283/PVT1 G/G and rs7158663/MEG3 G/G are associated with DKD and markers of renal function in T2DM patients from a Brazilian population.
Keywords: Diabetic kidney disease; Genetic polymorphisms; Type 2 diabetes Mellitus; lncRNAs.
© 2022. The Author(s), under exclusive licence to Springer Nature B.V.