Introduction: Brain atrophy in Parkinson's disease occurs to varying degrees in different brain regions, even at the early stage of the disease. While cortical morphological features are often considered independently in structural brain imaging studies, research on the co-progression of different cortical morphological measurements could provide new insights regarding the progression of PD. This study's aim was to examine the interplay between cortical curvature and thickness as a function of PD diagnosis, motor symptoms, and cognitive performance.
Methods: A total of 359 de novo PD patients and 159 healthy controls (HC) from the Parkinson's Progression Markers Initiative (PPMI) database were included in this study. Additionally, an independent cohort from four databases (182 PD, 132 HC) with longer disease durations was included to assess the effects of PD diagnosis in more advanced cases. Pearson correlation was used to determine subject-specific associations between cortical curvature and thickness estimated from T1-weighted MRI images. General linear modeling (GLM) was then used to assess the effect of PD diagnosis, motor symptoms, and cognitive performance on the curvature-thickness association. Next, longitudinal changes in the curvature-thickness correlation as well as the predictive effect of the cortical curvature-thickness association on changes in motor symptoms and cognitive performance across four years were investigated. Finally, Akaike information criterion (AIC) was used to build a GLM to model PD motor symptom severity cross-sectionally.
Results: A significant interaction effect between PD motor symptoms and age on the curvature-thickness correlation was found (βstandardized = 0.11; t(350) = 2.12; p = 0.03). This interaction effect showed that motor symptoms in older patients were related to an attenuated curvature-thickness association. No significant effect of PD diagnosis was observed for the PPMI database (β = 0.03; t(510) = 0.35; p = 0.72). However, in patients with a longer disease duration, a significant effect of diagnosis on the curvature-thickness association was found (βstandardized = 0.31; t(306.7) = 3.49; p = 0.0006). Moreover, rigidity, but not tremor, in PD was significantly related to the curvature-thickness correlation (βstandardized = 0.11, t(350) = 2.24, p = 0.03; βstandardized = -0.03, t(350) = -0.58, p = 0.56, respectively). The curvature-thickness association was attenuated over time in both PD and HC, but the two groups did not show a significantly different effect (βstandardized = 0.03, t(184.7) = 0.78, p = 0.44). No predictive effects of the CC-CT correlation on longitudinal changes in cognitive performance or motor symptoms were observed (all p-values > 0.05). The best cross-sectional model for PD motor symptoms included the curvature-thickness correlation, cognitive performance, and putamen dopamine transporter (DAT) binding, which together explained 14 % of variance.
Conclusion: The association between cortical curvature and thickness is related to PD motor symptoms and age. This research shows the potential of modeling the curvature-thickness interplay in PD.
Keywords: Cognitive performance; Cortical brain morphology; Motor symptoms; Parkinson’s disease; Structural MRI.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.