A novel HDAC6 inhibitor, CKD-504, is effective in treating preclinical models of huntington's disease

BMB Rep. 2023 Mar;56(2):178-183. doi: 10.5483/BMBRep.2022-0157.

Abstract

Huntington's disease (HD) is a neurodegenerative disorder, of which pathogenesis is caused by a polyglutamine expansion in the amino-terminus of huntingtin gene that resulted in the aggregation of mutant HTT proteins. HD is characterized by progressive motor dysfunction, cognitive impairment and neuropsychiatric disturbances. Histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase, has been shown to induce transport- and release-defect phenotypes in HD models, whilst treatment with HDAC6 inhibitors ameliorates the phenotypic effects of HD by increasing the levels of α-tubulin acetylation, as well as decreasing the accumulation of mutant huntingtin (mHTT) aggregates, suggesting HDAC6 inhibitor as a HD therapeutics. In this study, we employed in vitro neural stem cell (NSC) model and in vivo YAC128 transgenic (TG) mouse model of HD to test the effect of a novel HDAC6 selective inhibitor, CKD-504, developed by Chong Kun Dang (CKD Pharmaceutical Corp., Korea). We found that treatment of CKD-504 increased tubulin acetylation, microtubule stabilization, axonal transport, and the decrease of mutant huntingtin protein in vitro. From in vivo study, we observed CKD-504 improved the pathology of Huntington's disease: alleviated behavioral deficits, increased axonal transport and number of neurons, restored synaptic function in corticostriatal (CS) circuit, reduced mHTT accumulation, inflammation and tau hyperphosphorylation in YAC128 TG mouse model. These novel results highlight CKD-504 as a potential therapeutic strategy in HD. [BMB Reports 2023; 56(3): 178-183].

Publication types

  • News

MeSH terms

  • Animals
  • Disease Models, Animal
  • Histone Deacetylase 6 / metabolism
  • Huntington Disease* / drug therapy
  • Mice
  • Mice, Transgenic
  • Neurons / metabolism

Substances

  • Histone Deacetylase 6
  • CKD-504

Grants and funding

ACKNOWLEDGEMENTS This work was supported by an internal funding from the CKD Research Institute and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021M3A9G2015885) and by the Technological Innovation R&D Program (S3305828) funded by the Ministry of SMEs and Startups (MSS, Korea). We thank Dongchul Shin (iPS Bio) for the interpretation of electrophysiological data analysis.