Purpose: The current evaluation methods for tumor infiltrating lymphocytes (TILs), particularly CD8 + TILs, mainly rely on semiquantitative immunohistochemistry with high variability. We aimed to construct an individualized DNA methylation-based signature for CD8 + TILs (CD8 + MeTIL) that may characterize melanoma immune microenvironment and guide therapeutic selection.
Methods: The transcriptome profiles and DNA methylation data of 457 melanoma patients from The Cancer Genome Atlas (TCGA) database were analyzed. Differential methylation analysis between groups with high and low CD8 + TILs was performed to select differentially methylated positions (DMPs) and define CD8 + MeTIL. The prognostic value of CD8 + MeTIL and its predictive value for immunotherapy response were investigated using multiple melanoma cohorts.
Results: We successfully constructed the CD8 + MeTIL signature based on four DMPs. The survival analyses showed that higher CD8 + MeTIL score was associated with worse survival outcomes in TCGA-SKCM and GSE144487 cohorts. The ROC curve for the predictive analysis revealed that the survival prediction of CD8 + MeTIL score was superior compared with CD8 + TILs (CIBERSORT) and CD8B mRNA expression. Furthermore, we founded that tumors with higher CD8 + MeTIL score were marked with immunosuppressive characteristics, including low immune score and downregulated immune-related pathways. More importantly, the CD8 + MeTIL score showed a potential predictive value for the benefit from immunotherapy in two published cohorts. When combined CD8 + MeTIL with PD-L1 expression, the patient classification showed significantly different immunotherapy response rates and long-term survival outcomes.
Conclusions: The CD8 + MeTIL signature might be as a novel method to evaluate CD8 + TILs and guide immunotherapy approaches.
Keywords: CD8 + tumor infiltrating lymphocyte (CD8 + TILs); DNA methylation; Immune response; Melanoma; Prediction; Prognosis.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.