Image restoration for blurry optical images caused by photon diffusion with deep learning

J Opt Soc Am A Opt Image Sci Vis. 2023 Jan 1;40(1):96-107. doi: 10.1364/JOSAA.475890.

Abstract

Optical macroscopic imaging techniques have shown great significance in the investigations of biomedical issues by revealing structural or functional information of living bodies through the detection of visible or near-infrared light derived from different mechanisms. However, optical macroscopic imaging techniques suffer from poor spatial resolution due to photon diffusion in biological tissues. This dramatically restricts the application of optical imaging techniques in numerous situations. In this paper, an image restoration method based on deep learning is proposed to eliminate the blur caused by photon diffusion in optical macroscopic imaging. Two blurry images captured at orthogonal angles are used as the additional information to ensure the uniqueness of the solution and restore the small targets at deep locations. Then a fully convolutional neural network is proposed to accomplish the image restoration, which consists of three sectors: V-shaped network for central view, V-shaped network for side views, and synthetical path. The two V-shaped networks are concatenated to the synthetical path with skip connections to generate the output image. Simulations as well as phantom and mouse experiments are implemented. Results indicate the effectiveness of the proposed method.

MeSH terms

  • Animals
  • Deep Learning*
  • Image Processing, Computer-Assisted / methods
  • Mice
  • Neural Networks, Computer
  • Optical Imaging
  • Phantoms, Imaging