Lead halide perovskite single crystals have attracted wide interest in the field of X-ray detection due to their excellent photophysical properties. However, their inherent toxicity and high thickness restrict their applications in flexible devices. In this paper, designing a micronanometer-scale X-ray detector based on all-inorganic lead-free CsAg2I3 (CAI) single crystal microbelts (MBs) has addressed the above issues. These CAI single crystal MBs can be synthesized on various substrates with high crystal quality and excellent stability. Based on their excellent characteristics of the CAI MBs, we fabricate single CAI MB devices with an Au/CAI/Au structure, which shows not only good ultraviolet photoresponse characteristics, but also excellent X-ray detection performance. The optimized CAI photodetectors exhibit a responsivity of 23.59 mA/W, a high detectivity of 1010 Jones, and a fast response speed. For X-ray detection performance, a sensitivity of up to 515.49 μC Gyair-1 cm-2 and a detection limit of as low as 14.65 μGyair s-1 are achieved with outstanding operation stability and excellent long-term stability. Furthermore, our devices also showed excellent applicability for X-ray imaging, which is promising for their use in X-ray detection and imaging. Finally, flexible X-ray detectors are fabricated by using thin CAI single-crystal MBs and demonstrate good flexibility under different bending radii and bending cycles. Our work shows the potential for developing highly sensitive flexible integrated micro/nano optoelectronic devices by using lead-free perovskite analogue single crystals.
Keywords: flexible X-ray detectors; micronanometer-scale; silver-based perovskite analogues; single microbelt; single-crystalline.