Low-count whole-body PET/MRI restoration: an evaluation of dose reduction spectrum and five state-of-the-art artificial intelligence models

Eur J Nucl Med Mol Imaging. 2023 Apr;50(5):1337-1350. doi: 10.1007/s00259-022-06097-w. Epub 2023 Jan 12.

Abstract

Purpose: To provide a holistic and complete comparison of the five most advanced AI models in the augmentation of low-dose 18F-FDG PET data over the entire dose reduction spectrum.

Methods: In this multicenter study, five AI models were investigated for restoring low-count whole-body PET/MRI, covering convolutional benchmarks - U-Net, enhanced deep super-resolution network (EDSR), generative adversarial network (GAN) - and the most cutting-edge image reconstruction transformer models in computer vision to date - Swin transformer image restoration network (SwinIR) and EDSR-ViT (vision transformer). The models were evaluated against six groups of count levels representing the simulated 75%, 50%, 25%, 12.5%, 6.25%, and 1% (extremely ultra-low-count) of the clinical standard 3 MBq/kg 18F-FDG dose. The comparisons were performed upon two independent cohorts - (1) a primary cohort from Stanford University and (2) a cross-continental external validation cohort from Tübingen University - in order to ensure the findings are generalizable. A total of 476 original count and simulated low-count whole-body PET/MRI scans were incorporated into this analysis.

Results: For low-count PET restoration on the primary cohort, the mean structural similarity index (SSIM) scores for dose 6.25% were 0.898 (95% CI, 0.887-0.910) for EDSR, 0.893 (0.881-0.905) for EDSR-ViT, 0.873 (0.859-0.887) for GAN, 0.885 (0.873-0.898) for U-Net, and 0.910 (0.900-0.920) for SwinIR. In continuation, SwinIR and U-Net's performances were also discreetly evaluated at each simulated radiotracer dose levels. Using the primary Stanford cohort, the mean diagnostic image quality (DIQ; 5-point Likert scale) scores of SwinIR restoration were 5 (SD, 0) for dose 75%, 4.50 (0.535) for dose 50%, 3.75 (0.463) for dose 25%, 3.25 (0.463) for dose 12.5%, 4 (0.926) for dose 6.25%, and 2.5 (0.534) for dose 1%.

Conclusion: Compared to low-count PET images, with near-to or nondiagnostic images at higher dose reduction levels (up to 6.25%), both SwinIR and U-Net significantly improve the diagnostic quality of PET images. A radiotracer dose reduction to 1% of the current clinical standard radiotracer dose is out of scope for current AI techniques.

Keywords: CNN; Deep learning; PET restoration; Transformer model; Whole-body PET imaging.

Publication types

  • Multicenter Study

MeSH terms

  • Artificial Intelligence*
  • Drug Tapering
  • Fluorodeoxyglucose F18*
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging / methods
  • Positron-Emission Tomography / methods

Substances

  • Fluorodeoxyglucose F18