Role of Intraoperative Neurophysiological Monitoring in Preventing Stroke After Cardiac Surgery

Ann Thorac Surg. 2023 Sep;116(3):623-629. doi: 10.1016/j.athoracsur.2023.01.004. Epub 2023 Jan 10.

Abstract

Background: Perioperative stroke after cardiac surgical procedures carries significant morbidity. Dual intraoperative neurophysiological monitoring with electroencephalography (EEG) and somatosensory-evoked potentials detects cerebral hypoperfusion and predicts postoperative stroke in noncardiac procedures. We further evaluated preoperative risk factors and intraoperative neuromonitoring ability to predict postoperative stroke after cardiac operations.

Methods: All patients who underwent cardiac operations with intraoperative neurophysiological monitoring from 2009 to 2020 at a single academic medical center were retrospectively analyzed. Patients with circulatory arrest were excluded. Risks factors analyzed were sex, age, tobacco use, hypertension, diabetes mellitus, dyslipidemia, atrial fibrillation, prior cerebrovascular accident, cerebrovascular disease, antiplatelet/anticoagulant use, abnormal somatosensory-evoked potentials and EEG baselines, and significant somatosensory-evoked potentials and EEG change as well as their permanence. Patients were divided into 2 groups by 30-day postoperative stroke occurrence. Univariate and multivariate logistical regressions were used for postoperative stroke significant predictors, and Kaplan-Meier curves estimated survival.

Results: The study included 620 patients (67.6% men), mean age 65.1 ± 14.1 years, with stroke in 5.32%. In univariate analysis, diabetes (odds ratio [OR], 2.62) and permanence of EEG change (OR, 5.35) were each associated with increased postoperative stroke odds. In multivariate analysis, diabetes (OR, 2.64) and permanent EEG change (OR, 4.22) were independently significantly associated with postoperative stroke. Overall survival was significantly better for patients with no intraoperative neurophysiological monitoring changes (P < .005).

Conclusions: Permanent EEG change and diabetes were significant postoperative stroke predictors in cardiac operations. Furthermore, overall survival out to 10 years postoperatively was significantly higher in the group without intraoperative neurophysiological monitoring changes, emphasizing its important predictive role.

MeSH terms

  • Aged
  • Cardiac Surgical Procedures* / adverse effects
  • Cerebrovascular Disorders* / etiology
  • Female
  • Humans
  • Intraoperative Neurophysiological Monitoring* / methods
  • Male
  • Middle Aged
  • Retrospective Studies
  • Stroke* / epidemiology
  • Stroke* / etiology
  • Stroke* / prevention & control