Advancing the science on chemical classes

Environ Health. 2023 Jan 12;21(Suppl 1):120. doi: 10.1186/s12940-022-00919-y.

Abstract

Background: Hazard identification, risk assessment, regulatory, and policy activity are usually conducted on a chemical-by-chemical basis. Grouping chemicals into categories or classes is an underutilized approach that could make risk assessment and management of chemicals more efficient for regulators.

Objective and methods: While there are some available methods and regulatory frameworks that include the grouping of chemicals (e.g.,same molecular mechanism or similar chemical structure) there has not been a comprehensive evaluation of these different approaches nor a recommended course of action to better consider chemical classes in decision-making. This manuscript: 1) reviews current national and international approaches to grouping; 2) describes how groups could be defined based on the decision context (e.g., hazard/risk assessment, restrictions, prioritization, product development) and scientific considerations (e.g., intrinsic physical-chemical properties); 3) discusses advantages of developing a decision tree approach for grouping; 4) uses ortho-phthalates as a case study to identify and organize frameworks that could be used across agencies; and 5) discusses opportunities to advance the class concept within various regulatory decision-making scenarios.

Results: Structural similarity was the most common grouping approach for risk assessment among regulatory agencies (national and state level) and non-regulatory organizations, albeit with some variations in its definition. Toxicity to the same target organ or to the same biological function was also used in a few cases. The phthalates case study showed that a decision tree approach for grouping should include questions about uses regulated by other agencies to encourage more efficient, coherent, and protective chemical risk management.

Discussion and conclusion: Our evaluation of how classes of chemicals are defined and used identified commonalities and differences based on regulatory frameworks, risk assessments, and business strategies. We also identified that using a class-based approach could result in a more efficient process to reduce exposures to multiple hazardous chemicals and, ultimately, reduce health risks. We concluded that, in the absence of a prescribed method, a decision tree approach could facilitate the selection of chemicals belonging to a pre-defined class (e.g., chemicals with endocrine-disrupting activity; organohalogen flame retardants [OFR]) based on the decision-making context (e.g., regulatory risk management).

Keywords: Chemical class; Chemical grouping; Decision-making; Ortho-phthalates; Regulation; Risk assessment; Toxic chemicals.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hazardous Substances* / toxicity
  • Humans
  • Risk Assessment / methods

Substances

  • Hazardous Substances