Prediction of continuous and discrete kinetic parameters in horses from inertial measurement units data using recurrent artificial neural networks

Sci Rep. 2023 Jan 13;13(1):740. doi: 10.1038/s41598-023-27899-4.

Abstract

Vertical ground reaction force (GRFz) measurements are the best tool for assessing horses' weight-bearing lameness. However, collection of these data is often impractical for clinical use. This study evaluates GRFz predicted using data from body-mounted IMUs and long short-term memory recurrent neural networks (LSTM-RNN). Twenty-four clinically sound horses, equipped with IMUs on the upper-body (UB) and each limb, walked and trotted on a GRFz measuring treadmill (TiF). Both systems were time-synchronised. Data from randomly selected 16, 4, and 4 horses formed training, validation, and test datasets, respectively. LSTM-RNN with different input sets (All, Limbs, UB, Sacrum, or Withers) were trained to predict GRFz curves or peak-GRFz. Our models could predict GRFz shapes at both gaits with RMSE below 0.40 N.kg-1. The best peak-GRFz values were obtained when extracted from the predicted curves by the all dataset. For both GRFz curves and peak-GRFz values, predictions made with the All or UB datasets were systematically better than with the Limbs dataset, showing the importance of including upper-body kinematic information for kinetic parameters predictions. More data should be gathered to confirm the usability of LSTM-RNN for GRFz predictions, as they highly depend on factors like speed, gait, and the presence of weight-bearing lameness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Forelimb
  • Gait*
  • Hindlimb
  • Horses
  • Lameness, Animal*
  • Neural Networks, Computer
  • Walking