Circular RNA LPAR1 (circLPAR1) was revealed to be elevated in Alzheimer's disease (AD); nevertheless, its role and mechanisms in AD remain unknown. Memory performance of APP/PS1 mice was assessed by Morris water maze test. Expression of circLPAR1 and indicated messenger RNA (mRNA) in mouse brain tissues or/and SH-SY5Y cells were tested by quantitative real-time PCR (qRT-PCR). Protein expression of indicated gene was examined by western blot. Production of proinflammatory cytokines (tumor necrosis factor-α, TNF-α; interleukin-6, IL-6; interleukin-1β, IL-1β; and interleukin-8, IL-8) and oxidative stress-related factors (reactive oxygen species, ROS; malondialdehyde, MDA; superoxide dismutase, SOD; and glutathione, GSH) were assessed by commercial kits. RNA pull down and RNA immunoprecipitation were performed to verify the interplay between up-frameshift protein 1 (UPF1) and circLPAR1 or growth differentiation factor 15 (GDF-15). CircLPAR1 was elevated, while GDF-15 was decreased in both APP/PS1 mice and Aβ-treated SH-SY5Y cells. Knockdown of circLPAR1 and overexpression of GDF-15 protected cells against Aβ-caused inflammation, oxidative stress, and neuronal apoptosis. CircLPAR1 knockdown was also proved to improve AD-related pathological traits and ameliorate cognitive dysfunctions in vivo. In mechanism, we found that circLPAR1 repressed GDF-15 expression by decreasing GDF-15 mRNA stability through UPF1 recruitment. Rescue assays suggested that sirtuin 1 (SIRT1) knockdown reversed GDF-15 overexpression-induced inhibition on Aβ-induced neuronal damage and nuclear factor E2-related factor (Nrf-2)/heme oxygenase-1 (HO-1) pathway inhibition. Moreover, the protective effect of circLPAR1 knockdown against Aβ-induced apoptosis was abolished by GDF-15 knockdown, and SIRT1 overexpression could counteract this effect of GDF-15 knockdown. CircLPAR1 knockdown improved AD-related pathological traits in vitro and in vivo by inhibiting SIRT1/Nrf-2/HO-1 axis through GDF-15.
Keywords: Alzheimer’s disease; CircLPAR1; GDF-15; Inflammation; Oxidative stress; SIRT1.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.