Background: Inflammatory bowel disease may be due to failed tolerance to normal gut bacteria. We demonstrate that epicutaneous immunotherapy (ET) to ovalbumin can alleviate colitis in murine models. However, most people are tolerant to or have anergy to ovalbumin. Half of Crohn's disease (CD) patients have CBir1 antibodies that can be elevated years before CD development. We determined whether ET with a CBir1 multi-epitope peptide (MEP1) could alleviate colitis.
Methods: Wild type mice (C57BL/6) were transferred with CBir1 T cell receptor (TCR) T cells followed by epicutaneous application of MEP1. Proliferating Foxp3+ T cells were measured in mesenteric lymph nodes (LNs), spleen, small intestine, and colon by flow cytometry. Lymphocytes from MEP1 epicutaneously exposed and immunized C57BL/6 mice were cultured with MEP1. Interferon (IFN)-γ production was measured. Colitis was induced by transferring CD4+CD45Rbhi T cells from CBIR1 TCR or C57BL/6 mice into RAG1-/- mice. Mice were treated with ET. Body weight, colon length, colonic cytokine production, histological inflammation, inflammatory genes, and regulatory T cells (Tregs) from lamina propria were measured.
Results: ET with 10 μg of MEP1 induced CBir1-specific Tregs that migrated to the small intestine and colon and suppressed MEP1-specific IFN-γ production. ET alleviated colitis when the model utilized CBir1 TCR T cells in mice colonized with CBir1 or A4Fla2 positive bacteria. Treated mice had improved colon length and histological inflammation and reduced colonic IFN-γ production.
Conclusion: Epicutaneous immunotherapy with MEP1 induced Tregs that migrate to intestines and suppress inflammation in mice with CBir1 or A4Fla2-positive bacterial colonization. This could be a potential strategy to treat CD and warrants further study.
Keywords: CBir1; colitis; epicutaneous immunotherapy; flagellin; tolerance.
Epicutaneous immunotherapy with a CBir1 multi-epitope peptide, the dominant flagellin for both murine and human, can induce Tregs that migrate to intestines and suppress inflammation in mice with CBir1 or A4Fla2-positive bacterial colonization.
© The Author(s) 2023. Published by Oxford University Press on behalf of Crohn’s & Colitis Foundation. All rights reserved. For permissions, please e-mail: [email protected].