Objective.Lutetium-yttrium orthosilicate (LYSO)-based Compton camera (CC) has been proposed for prompt gamma imaging due to its high detection efficiency and position resolution. However, very few LYSO CC prototypes have been built and used for practical evaluation. In this study, we built a lightweight dense-pixel silicon photomultiplier-based two-layer LYSO CC prototype for future prompt gamma imaging.Approach.We attempt the first-ever effort to use the double-encoding with the thick light guide and coding circuit structure for 46 × 46 dense-pixel LYSO detectors construction and use pixel segmentation based on centroid mapping to obtain 4232 spectral calibrations. We also present a framework for list-mode projection data acquisition based on the decoding of the time series data obtained by data acquisition card in this study. Finally, the standard source calibration, ring-like22Na source with non-uniform intensity, and mixed point-like source with a wide energy spectrum experiments were implemented to evaluate the resolution metrics and imaging performance of the prototype.Main results.The lateral position resolution of the prototype was 1 mm, and the maximum measurement deviation is 2.5 mm and 5 mm in the depth direction for the scatterer and absorber, respectively. In the experiments, the measured energy resolution was 9.63% @ 1.33 MeV for the scatterer and 10.8% @ 1.33 MeV for the absorber. And the detection efficiency of the prototype for a spherical60Co source with a diameter of 2.8 mm at 10 cm far was 5.7 × 10-3@ 1.33 MeV and the full width at half maximum of the reconstruction was 5.5 mm. Besides, the spatial position offset within 2 mm of the radioactive source at 10 cm can be distinguished.Signification.The developed two-layer dense-pixel LYSO CC contributes to incorporating Compton imaging techniques for prompt gamma detection and multiple energy sources into nuclear medical imaging.
Keywords: Compton imaging; LYSO detector; prompt gamma imaging; prototype evaluation.
© 2023 Institute of Physics and Engineering in Medicine.